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Abstract. The semiclassical quantization method of Einstein, Brillouin and Keller is 
applied to some model Hamiltonians of two degrees of freedom which simulate non-separ- 
able molecular vibrations. A numerical scheme is based on the variation principle for 
invariant toroids and is used to obtain the regular energy spectrum over a wide range 

faster than matrix diagonalization methods, where U,,, is a typical maximum vibrational 
quantum number and LV is the number of degrees of freedom 

of energies. The scheme is rapid and effective, being about a factor ~ ~ ~ ~ ~ ( N ~ 1 6 " ' ~ ' '  1 

1. Introduction 

The general theory of semiclassical quantization of the regular spectrum (Percival 
1973) of bound systems of many degrees of freedom is due to Einstein (1917), Brillouin 
(1926) and Keller (1958) and to Maslov (1972). It is named EBK quantization and 
the field is reviewed by Percival (1977). 

As described in a previous paper (Percival and Pomphrey 1976, to be referred 
to as I) a vibrational spectrum is determined from classical energy functions E(Z) 
of a vector action variable 

z = (II. I,, . . .)  IX) (1) 
where N is the number of degrees of freedom. Each quantal state is labelled by 
vibrational quantum numbers 

ck ( k  = 1 , .  . . ,Ai) 

and corresponds to an invariant toroid in classical phase space which has vector 
action variable Z with components 

I, = (U, + +) ( k  = 1, .  . ., N )  (2) 
and approximate semiclassical energy given by the corresponding E(Z). 

A prescription for obtaining invariant toroids is described in I. The practical 
determination of energy levels reduces to the determination of action variables of 
invariant toroids. This holds whether the Hamiltonian function of the system is 
separable or not. The problem is equivalent to the calculation of approximate con- 
stants of the motion in classical mechanics. 

Eastes and Marcus (1974) and also Noid and Marcus (1975) use EBK quantization 
and stepwise numerical integration of trajectories to obtain invariant toroids and 
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Poincare surfaces of section to derive action integrals. However numerical integration 
can be a lengthy procedure and it is difficult to obtain accurate integrals. 

In I we gave a direct parametric representation of invariant toroids and used 
a variational principle (Percival 1974) to determine the energy function E(I) .  Chapman 
et a1 (1976) also use EBK quantization and solve the Hamilton-Jacobi equation 
for the action function S by a numerical version of the iterative procedure given 
by Born (1960). The function S is the classical analogue of a unitary matrix in quan- 
tum theory. 

The variational principle can be used to obtain a family of related methods of 
evaluating the energy function. In I we used it to derive a Taylor expansion in 
terms of a perturbation parameter. This is clearly limited by the radius of convergence 
of the expansion. We also used a numerical technique to obtain invariant toroids 
and checked them against direct numerical integration of trajectories, but we did 
not at the same time find the action variables, which is our present purpose. 

We wish to obtain the energy levels E ( I )  to a precision required by spectroscopy. 
The most efficient way of doing this is not by individual evaluation for specific 
energy levels, but by an evaluation of large numbers of close levels of the regular 
spectrum. For our examples we obtain E(I)  for the values of I given by the quantiza- 
tion condition (2), but even this is not absolutely necessary provided E(I)  is obtained 
on a mesh of values of I which can be adequately interpolated. 

In $2 the variational principle for invariant toroids is described, and used to 
obtain the 'angle Hamilton's equations'. 

The fundamental problem of sinal1 divisors which is familiar in celestial 
mechanics is discussed in relation to semiclassical iteration procedures in 53. 

Section 4 presents an iteration scheme for the numerical determination of energy 
spectra, and $5 provides a comparison of estimated computation times with alterna- 
tive quantal methods. 

Finally in 56 we present the results of applying the numerical iteration scheme 
to two-dimensional model Hamiltonians, and it proves to be very effective for obtain- 
ing semiclassical energy levels. The models are similar in form to molecular potentials, 
for which the method should be effective. 

2. Variational principle 

We now restrict discussion to two degrees of freedom. Generalization is trivial, and 
is given with more details in I. Let 

(3) x= (4, P) = (111, 42, Pi,  p 2 )  

be points of the phase space and H ( q , p )  be the Hamiltonian function. A toroid 
C is defined parametrically by the periodic functional dependence of a point X = (4, p )  
on the toroid on two angle variables 01, 0 ,  

x,(Ql,e2) = (4,(61> Pz(01>e2)1, (4) 
A normalized integral of a function f(e,, 0,) over the space of the action variables 
is defined by 
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The mean value of the energy on the toroid is 

( E ) ,  = f dze~(q,(oi ,e2) ,  Pz(oi, 0 2 ) )  

and the mean of the kth action integral is 

I k ( C )  = f dzflpX(ol, 02)*a42(01, 02)la0k. (7)  

An invariant toroid is one that is made up of classical trajectories for the system 
described by Hamiltonian H. The variational principle states that for invariant tor- 
oids, the mean energy is stationary subject to the action integrals remaining constant, 
that is 

A@ = O(AX)2 (8) 
where 

Here the ok are Lagrange multipliers, but are later found to be the characteristic 
angular frequencies of the classical motion. 

The variational principle for invariant toroids is the classical analogue of the 
variational principle for ($,fi$), where $ is a bound state of the system described 
by Hamiltonian operator fi (see I). 

When the Hamiltonian function has the form 

(1 1) 
1 

2m 
H = - (p’ 1 + P S I  + V ( q l > q 2 )  

the action integrals can be written in terms of the coordinates 

I k F  G k j o j ,  (12) 
j 

where Gkj  is a generalized moment-of-inertia tensor given by (Percival 1974) 

J aq aq 

By the usual variational methods we obtain the ‘angle Hamilton’s equations’ 

olaq/aol -t 02aq/ao2 = m / a P  
wlappo,  + 02ap/ao2 = - m i d q  

where 

These equations are partial differential equations for the toroid. They may be solved 
by a variety of iteration procedures, many of which require Fourier analysis with 
respect to the angle variables. 



3134 I C Percival and N Pomphrey 

3. Principles of computation 

When a system is separable, the invariant toroid is determined by the energy constants 
of the separated systems and the action integrals are the corresponding action inte- 
grals (2n)-' $pkdq, of the separated systems. In the case of the vibration of molecules 
the motion is approximately separable in the neighbourhood of equilibrium. 

Separated motion of an unperturbed Hamiltonian H o  is used as a starting point 
for the iterative procedures of this paper, but unlike the analytic perturbation-varia- 
tion method of I these procedures are not power series expansions in a perturbation 
parameter. 

In real molecules and others systems, the states of higher energy are very far 
from being separable; the classical motion can become irregular and the correspond- 
ing quantal spectrum is then also irregular. Invariant toroids do not exist and all 
methods then fail. 

All iterative procedures run into the fundamental problem of small divisors or 
accidental degeneracy when characteristic frequencies approach values for which 

(16) 
( v ,  and 17, integers, not both zero). In practice the problem is only serious when 
v ,  and v 2  are both fairly small in magnitude and the coupling strong. High v1 or 
v 2  normally affect very small regions of phase space, and when these are smaller than 
(2nh)' they have little influence on the problem of quantization and can be neglected. 

For sufficiently strong coupling, the small v ,  and v 2  can produce irregular regions 
which occupy significant volumes of phase space. The problem of small divisors 
is fundamental because its presence may call into question the existence of invariant 
toroids of a given I ,  and I,,  and not merely a computational difficulty (Percival 
1973). 

As the invariant toroids of the regular region approach the irregular region they 
become more and more convoluted. It is then difficult to represent them in any 
way but parametrically as in equation (4). Other methods, e.g. in terms of an action 
function S ( I , ,  I , ,  0:, 0:) which generates the transformation from some fixed coor- 
dinate 0' to the action variable, run a strong risk of requiring many-valued functions, 
which are difficult to handle. The parametric representation in terms of angle variables 
(el, 0,) is always single valued. 

The iteration procedure of $4 is a step-by-step solution for the energy levels 
E(I)  = E ( I l ,  I ,)  in which the invariant toroid for one value of ( Z l , Z 2 )  is used as a 
starting point for an iteration procedure for the next ( I ,  + AIl, Z 2 )  or ( I , ,  I 2  + AI,). 
In this work AIk = h, but this is not essential. The variational principle (8) is used 
to ensure quadratic convergence. 

V l O ,  + v,w, = 0 

4. Numerical scheme 

We consider a Hamiltonian which has the form 

H(r ,  p )  = T(p)  + V ( 4  

T(P) = 3(P,2 +' P;) 

where 
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is the kinetic energy, and 

V(r)  = 3(ix2 + py2) + bl Vanh(x,  y) (19) 
is the potential energy. 

series 
In I we showed that if the coordinates and momenta are expanded in Fourier 

the following nonlinear equations result: 

Cl, - b1w1 + ~2w2)21xs, ,s2 = e:,:> 
[ P  - ( s 1 0 1  + s2w2)21Ys1,s2  = FL",;,: 

where F,";,h,, are the Fourier coefficients of the anharmonic force 

Fanh(r )  = - b,VV""hV). (23) 

Equations (22) can be used as a basis for a numerical iteration scheme to provide 
energy levels E(Z1, Z 2 )  of Hamiltonian H ,  which define an energy spectrum of H when 

I k  = ( v k  + i ) h ,  ( k  = 1,2). (24) 

H 0  = +(px" + p ; )  + +(AX2 + py2) (25) 

A toroid of the unperturbed Hamiltonian 

is chosen as starting point for the procedure. Fourier series (20) and (21) with 

and frequencies 

define a toroid of H o  labelled by action integrals I,, 12 .  We wish to determine a 
toroid of H with the same values of I , ,  I,. 

A two-dimensional Fourier sum with coefficients (26) yields the corresponding 
doubly periodic functions x(8,, 02) ,  y(8,, 0,) which can be used to obtain an approxi- 
mate mean energy on the toroid through the equation 

( E )  = Z (.w + s 2 ~ 2 ) 2 ( . ~ ; 1 , s 2  + Y,',,,,) + d v ( x ( e l ,  e,), Y(&, e,)). (28) 
\ I  \ r  f 

The Fourier integral of the anharmonic force functions Fdnh(x(Q1, Q 2 ) ,  y ( Q l ,  e,)) yields 
corresponding Fourier coefficients a:;,:, which are required to obtain a more accurate 
representation of the toroid: equations (22) with (s,,  s2) = (1,0), (sl, s2) = (0, 1) are 
used to obtain corrected frequencies wl, w2 and also to obtain the corrected Fourier 
coefficients of position 

XSl,S* (s1,s2) # (*1,0) 

Y S , > S ,  ( S l , S 2 )  # (0, i 1). (29) 
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x _ c l , o  and are obtained at each stage of the iteration by inverting equations 
(12) and (1 3) (see appendix). 

The description of one cycle of the iteration for an energy level E(Z,, I ,) ,  with 
chosen I , ,  I ,  is now complete. Figure 1 shows a flow chart which illustrates how 
this cycle is used to determine the energy spectrum of H .  

The invariant toroid for one value of Z is used as a starting point for the iteration 
for the energy level E(Z + AZ), and AZ may be chosen in a variety of ways. Figure 
2 shows two possible ways in which a grid of values I , ,  I ,  can be covered. The 
lines joining adjacent points of the grid indicate the order in which the energy levels 
E(Z) are to be determined; both methods were used in practice. 

/ = I + A /  a 

Figure 1. Flow chart for iteration scheme for energy spectrum of 
H = %p: + p:) + r(/.x2 + py2) + h,  Va""(x, y). 
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- 
I1 

Figure 2. Two possible schemes for spanning the I space 

At any stage of the iterations for a given energy level the ratio 01/u2 of the 
approximate frequencies will depend on which toroid has been chosen as starting 
point, or, in other words, on the choice of AZ. If the frequencies satisfy low-order 
resonance conditions of the form (16), then progress will be halted by the existence 
of zero denominators. In this case it is frequently possible to alter the choice of AI so 
that zero denominators are avoided. An exceptional case where this procedure 
cannot be implemented occurs when the frequencies on the invariant toroid are 
accidentally degenerate. Further improvements of the method are in hand. 

5. Computational method 

For two degrees of freedom each doubly periodic function f(61, 8,) is approximated 
by a finite double Fourier sum of M 2  terms and the functions f are tabulated on 
an M x M mesh of equally spaced points spanning the space of the angle variables 

-7L < 0, d 71, - 7 L  < 8, 6 71. 

The iterations for a particular energy level can be considered to be successfully 
completed when the difference between successive values of the mean energy is less 
than some tolerable value Tol. 

The number of arithmetic operations required to perform a two-dimensional fast 
Fourier transform of an M x M array of elements depends on 2M2 log, M .  Since 
each cycle of the iteration described in $4 employs four such transforms, the computa- 
tional time required to determine an energy level E(ll, 1,) to accuracy To1 depends 
on 8 K M 2  log, M where K is the number of iterations. It is important to realize 
that both K and M are normally insensitive to I ,  and I ,  ($6). In contrast, 
the corresponding time per level required by standard quantal methods such as matrix 
diagonalization is proportional to L2,  where L is the number of basis wavefunctions. 
Clearly the effectiveness of the semiclassical method gains rapidly over quantal 
methods as I ,  and I ,  are increased. For the calculation of vibrational levels of mole- 
cules with N degrees of freedom, the semiclassical iteration procedure is expected 
to be about a factor ’) faster than matrix diagonalization methods, 
where vmax is a typical maximum vibrational qauntum number. This estimate has 
been obtained assuming that, for the diagonalization method, the number of basis 
functions required for the adequate representation of a vibrational energy level with 
vibrational quantum number U,,, is proportional to 4”3~za,. This’ is clearly an 
optimistic estimate. Finally it is important to note that the semiclassical iteration 
method does not run into the severe computer storage problems of quantal matrix 
methods, where very large bases are needed. 
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6. Results 

The non-separable two-dimensional quadratic Hamiltonian 

H = +(p: + p;)  + $ix2 + py2)  + b l x 2 y 2  

has been considered in detail in I, where a perturbation variation method was used 
to obtain an expression for the energy function E(ll, 1 2 )  as an expansion in powers 
of b,. The problem of barrier penetration can be ignored, for the same reason as 
in the theory of the Stark effect for weak fields. 

The numerical iteration scheme described in this paper has also been applied 
to Hamiltonian (30) with the following parameter values: 3, = 1.0, p = 05, 
h l  = -0.003 and ti = 1. The results reproduce with a maximum deviation of 
0.04 cm-' those obtained by the authors in I using the perturbation variation method. 

M = 8 was sufficient to  achieve convergence of each of the lowest 45 energy 
levels to within an accuracy To1 = 0.01 cm-'. The number of iterations required 
for convergence of each energy level was never greater than three. Agreement between 
semiclassical and quantal results is very good. 

Much attention has recently been paid to the non-separable cubic Hamiltonian 

H = f(p: + p i )  + $ix2 + p y 2 )  + blx(y2 + b2x2) .  (31) 
Eastes and Marcus (1974) and also Noid and Marcus (1975) were the first workers 
to apply a semiclassical technique to the problem of determining the energy levels 
of multi-dimensional non-separable systems and they concentrated their efforts on 
Hamiltonian (31). Chapman et a1 (1976) have also been able to determine semiclassical 
energy levels of (31) using a method which is due to Born (1960). For fixed 1 and 
p. these authors calculate energy levels for a range of values of b,  and b2 which 
test the semiclassical method under conditions of strong as well as weak perturba- 
tions. 

Table 1 presents the results of applying the numerical iteration procedure of this 
paper to the Hamiltonian (31). For the worst case, M = 16 was sufficient to yield 
energy levels which had converged to within To1 = 0*0001 in four iterations. The 
semiclassical energy levels agree well with those obtained by Chapman et al. 
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Appendix 

To obtain corrected coefficients of position x + ~ , ~ ,  - yo > -  

are inverted. Writing 
equations (12) and (13) 

2 

I, = 1 (G& + GEj)oj, k =  1,2 64.1) 
j =  1 

where 

A.\I.P.(B) 9 / 1 7 - ~  
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and 

The corrected fundamental coefficients of position are then given by 
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